defect protein (8–18) (Mud; NuMA in mammals, Lin-5 in C. elegans) with mitotic spindle orientation. We conclude that Pins has multiple activity states that generate cortical polarity and link it with mitotic spindle orientation.

cell polarity | cell signaling | differentiation | protein–protein interactions

In complex, multicellular organisms, differentiated cell types are needed to perform diverse functions. One common mechanism for cellular differentiation is asymmetric cell division, in which the mitotic spindle is aligned with the cell polarity axis to generate molecularly distinct sibling cells (1–4). Asymmetric divisions have been proposed to regulate stem cell pool size during development, adult tissue homeostasis, and the uncontrolled proliferation observed in cancer (5). Thus, understanding how the mitotic spindle is coupled to the cell polarity axis is relevant to stem cell and cancer biology. Here, we investigate this question in Drosophila neuroblasts, a model system for studying asymmetric cell division.

Drosophila neuroblasts are stem cell-like progenitors that divide asymmetrically to produce a larger self-renewing neuroblast and a smaller ganglion mother cell (GMC) that differentiates into neurons or glia (3). Mitotic neuroblasts segregate factors that promote neuroblast self-renewal to their apical cortex and differentiation factors to their basal cortex. Precise alignment of the mitotic spindle with the neuroblast apical/basal polarity is required for asymmetric cell division and proper brain development: spindle misalignment leads to symmetric cell divisions that expand the neuroblast population and brain size (6–8).

A key regulator of neuroblast cell polarity and spindle orientation is Partner of Inscuteable (Pins; LGN or mPins in mammals, GPR-1/2 in Caenorhabditis elegans). In metaphase neuroblasts, Pins is colocalized with the apical cortex with heterotrimeric G protein subunit Goi and the spindle-associated, coiled-coil mushroom body defect protein (8–18) (Mud; NuMA in mammals, Lin-5 in C. elegans). Pins and Goi are interdependent for localization and for establishing cortical polarity (17, 18). Pins also binds directly to Mud and recruits it to the apical cortex; Mud is specifically required to align the mitotic spindle with Goi/Pins but has no apparent role in establishing cortical polarity (8, 13, 14).

The mechanism underlying Pins regulation of cortical polarity and spindle–cortex coupling is unclear, and it is unknown how Goi–Pins–Mud complex assembly is regulated. Pins has the potential to bind multiple Goi-GDP molecules via three short GoLoco motifs (Fig. 1A), as do mammalian Pins homologs (19), but the role of these multiple binding sites is unknown. Moreover, via its tetratricopeptide repeats (TPRs), Pins can bind Mud (8, 13, 14), but the stoichiometry and regulation of this interaction has not been explored. Furthermore, we show below that, like its mammalian homolog LGN (19), the regions of Pins containing the TPRs and GoLocos interact, raising the possibility of cooperative “opening” of Pins by Goi and Mud ligands. Here, we test the role of Pins intramolecular interactions in coupling cortical polarity with spindle orientation. We use biochemistry, genetics, and in vivo live imaging to test the role of Pins intramolecular interactions and whether Goi and Mud bind Pins independently, cooperatively, or antagonistically. We conclude that Pins has multiple functional states—a form recruited by a single Goi to the apical cortex that is unable tobind Mud but sufficient to induce cortical polarity, and a form saturated with Goi that recruits Mud and links cortical polarity to the mitotic spindle. The multiple Pins states are due to cooperative binding of Mud and Goi to Pins and result in a tight link between apical cortical polarity and mitotic spindle orientation.

Results

Goi and Mud Bind Cooperatively to Pins. The NH$_2$-terminal half of Pins contains seven TPRs, and the COOH-terminal half contains three GoLoco motifs, which we term the GoLoco region, or GLR (Fig. 1A). Each of the three GoLocos has the potential to bind GDP-bound Goi (20), whereas the TPRs bind the Mud protein (8, 13, 14). Before testing whether the Pins intramolecular interaction regulates Pins–Goi–Mud complex assembly, we first characterized each of the relevant individual domain interactions: TPR–Mud, GLR–Goi, and TPR–GLR. First, the Pins TPRs bind Mud with a 1:1 stoichiometry as judged by the elution profile of the TPR–Mud complex on a calibrated gel-filtration column [shown in supporting information (SI) Fig. S4 A], indicating that Pins contains a single Mud binding site. Second, each of the three Pins GoLoco domains binds Goi-GDP (hereafter Goi) equally well in a qualitative pull-down assay (Fig. 1B) as well as in a more quantitative assay measuring Goi binding by using the fluorescence anisotropy of tetramethylrhodamine labeled Goi (Fig. 1C).

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Abbreviations: GLR, GoLoco region; PBD, Pins binding domain; TPR, tetratricopeptide repeat.

*To whom correspondence should be addressed. E-mail: prehoda@molbio.uoregon.edu.

This article contains supporting information online at www.pnas.org/cgi/content/full/0701812104/DC1.

© 2007 by The National Academy of Sciences of the USA
We used gel-filtration chromatography of full-length Pins and G to determine how Gai–GoLoco binding is affected by the intramolecular interaction. Pins elutes as a single peak with an elution volume consistent with the molecular weight for a monomer (Fig. 2A). (The protein composition of the peaks, as determined by SDS/PAGE, is shown in SI Fig. 5C.) Addition of low Gai concentrations leads to formation of a 1:1 Gai:Pins complex peak (we assigned peaks to 1:1 or 2:1 complexes using Pins mutants with one or two GoLocos inactivated). Higher Gai concentrations lead to the formation of a 3:1 Gai:Pins complex with a very broad peak, suggestive of a lower affinity interaction. We conclude that full-length Pins contains a single high-affinity Gai-binding GoLoco and two low-affinity GoLocos.

Because the three GoLocos are intrinsically equivalent, independent Gai binding sites (Fig. 1D), the distinct Gai binding behavior in full-length Pins suggests that Pins contains one GoLoco domain that is unregulated or only partially regulated by the intramolecular interaction and two GoLoco domains that are cooperatively repressed. To further explore this model, we inactivated one or more GoLocos by mutating a single critical arginine residue (20) to phenylalanine in the context of full-length Pins. These mutations do not inhibit the ability of the TPRs and GoLocos to interact (SI Fig. 5D). Inactivation of GoLoco1 (Pins AG1; R486F) specifically abolishes the high-affinity 1:1 complex (Fig. 2B), whereas inactivation of either GoLoco 2 or 3 has no effect on the high-affinity complex (unpublished observations). We therefore classify GoLoco1 as a high-affinity GoLoco in the context of full-length Pins. Disruption of GoLocos 2 and 3 (Pins ∆GL2/3; R570F, R631F) leads to the formation of a 1:1 complex at low concentrations of Gai, further confirming that GoLoco1 is not repressed by the TPRs (Fig. 2C). We conclude that the three GoLoco motifs are differentially regulated by the Pins intramolecular interaction: Gai shows unregulated high-affinity binding to GoLoco1 and low-affinity, cooperative binding to GoLocos 2 and 3.

We next asked how Gai binding to the different Pins GoLoco domains affects cooperative Gai–Pins–Mud complex assembly. When GoLoco1 is inactivated (Pins AG1L), Gai can still enhance Mud binding (Fig. 2D), in a manner similar to the WT Pins (Fig. 1D). The activation is more efficient, however, presumably because of the lack of Gai “buffering” by GoLoco1. In contrast, in the Pins ∆GL2/3 mutant, Gai does not enhance Mud binding (Fig. 2E) even though it binds GoLoco1 with high affinity (Fig. 2C). Thus, Pins differentially regulates the ability of Gai to promote Pins–Mud binding: Gai binding to GoLoco1 has no effect on Pins–Mud binding.
binding, whereas Gai binding to GoLocos 2 and 3 strongly enhances Pins–Mud association.

The Conformational Transition to “Open” Pins Requires both Mud and Gai. Our results suggest that Gai binding to GoLocos 2 and 3 “opens” Pins to allow Mud binding to the TPRs. To directly monitor the Pins conformational transition between “closed” and “open” states, we constructed a Pins fluorescence resonance energy transfer (FRET) sensor with YFP and CFP at the NH2 and COOH termini, respectively (Fig. 3A). This type of sensor has been used successfully to monitor the conformational transition of a mammalian Pins homolog, LGN (19). Surprisingly, addition of Gai or Mud alone did not cause a significant change in the YFP–Pins–CFP FRET signal, even at high concentrations (Fig. 3B), suggesting that Gai or Mud alone is insufficient to “open” Pins. The addition of both ligands together, however, leads to a large change in the FRET signal (nearly complete loss of energy transfer), indicating that Mud and Gai are both required to induce the “open” Pins conformation (Fig. 3B). To test the model that Gai binding to GoLoco1 cannot open Pins, we analyzed a Pins ΔGL2/3 FRET sensor. As shown in Fig. 3C, Mud and Gai fail to induce the conformational change seen with the WT FRET sensor, consistent with Gai binding at GoLoco1 not being coupled to the intramolecular interaction.

Because Mud or Gai alone are not able to “open” Pins, we can exclude a simple model in which Mud and Gai directly compete in a mutually exclusive fashion (e.g., sterically) with the intramolecular interaction. Although we observe disruption of the Pins TPR–GLR interaction in trans (Fig. 1 D and E), this is likely to result from effective concentration effects in which the interaction is weaker when the two domains are not in the same polypeptide. We conclude that Mud and Gai allosterically modulate the TPRs and GoLocos, respectively, in a manner that leaves the intramolecular interaction intact but in a weakened state, poised to open upon binding of the second ligand. Thus, Pins can exist in a “closed” state (no Gai or Mud bound), a “potentiated” closed state (with Gai or Mud bound), and an “open” state (with both Gai and Mud bound) (Fig. 3D).

Neuroblasts Expressing Pins with Inactive GoLocos 2 and 3 Fail to Induce Pins–Mud Apical Coupling. Based on the network of interactions present in Pins, Gai binding to GoLoco1 should recruit Pins to the neuroblast apical cortex but not lead to Mud recruitment. To test this model, we expressed either HA:Pins WT or HA:Pins ΔGL2/3 in pins mutant neuroblasts and examined both Pins and Mud localization. In third-instar larval central brain neuroblasts, both WT and ΔGL2/3 Pins localized to the apical cortex at metaphase (Fig. 3 E and F). However, Mud was correctly recruited to the apical cortex in neuroblasts expressing WT Pins (Fig. 3E, 86%; n = 15), and Mud recruitment in ΔGL2/3 neuroblasts was significantly reduced (Fig. 3F, 31%; n = 13). Thus, Gai binding to GoLoco1 is sufficient for Pins localization but not for efficient Mud targeting.

To understand how cortically localized and Mud-recruiting Pins states are populated as Gai accumulates at the apical cortex, we simulated Pins–Gai binding based on the parameters described earlier (Fig. 3G). At low Gai concentration, Pins with Gai bound to GoLoco1 predominates because of its higher affinity relative to the other two GoLocos (which are repressed by the TPRs). Although this Pins form does not bind to Mud with high affinity, we hypothesize that it is sufficient to induce aspects of cortical polarity (e.g., Incs polarization). At higher Gai concentrations, GoLoco1 becomes saturated and binding can occur at GoLocos 2 and 3, allowing for Mud recruitment to the apical cortex (Fig. 3D). Thus, we predict that as Gai accumulates at the apical cortex, it first recruits Pins in a form that is competent for cortical polarization but not spindle positioning. As Gai levels further increase, however, GoLocos 2 and 3 become populated, weakening the intramolecular interaction and freeing the TPRs to recruit Mud to the apical cortex.

Reduced Gai Impairs Pins–Mud Interaction and Spindle Orientation in Larval Neuroblasts. We tested the model that the population of Pins activation states is very sensitive to Gai concentration by examining Pins localization, Mud localization, and spindle orientation in larval neuroblasts with different levels of Gai protein. Our model strongly predicts that normal Gai and Mud levels should “open” Pins to form a ternary complex at the apical cortex that is functional for spindle alignment, low Gai levels would bind Pins GoLoco1 and recruit Pins to the apical cortex without allowing Mud binding or spindle orientation, and no Gai protein would result in a failure to recruit Pins or Mud to the cortex. To test this model, we examined larval neuroblasts with normal, low, or no Gai protein (WT zygotic mutants and maternal zygotic mutants, respectively). As expected, neuroblasts with WT levels of Gai invariably colocализate Gai, Pins, and Mud to an apical cortical crescent that is tightly coupled with the mitotic spindle (Fig. 4 A, C, E, F, and K; quantified in Fig. 4I), consistent with the activity of both Gai and Mud “opening” Pins to form a ternary complex that is functional for spindle orientation. In contrast, neuroblasts with reduced Gai levels formed robust Pins and Insc crescents (Fig. 4 B, D, and G–I; quantified in Fig. 4I) but typically failed to localize Mud to the apical cortex (Fig. 4 G–I; quantified in Fig. 4J) and showed defects in spindle orientation (Fig. 4 H, I, and K). Neuroblasts lacking all Gai protein fail to recruit Pins to the cortex and have spindle orientation defects (17, 18). These results strongly support our model: low Gai levels can recruit “closed” Pins to the cortex without recruiting Mud or promoting spindle orientation, whereas higher Gai levels function together with Mud to “open” Pins and promote spindle orientation.

To further test our model, we used time-lapse video microscopy...
Fig. 3. Pins undergoes a conformational change into a high Mud binding affinity state in response to Gai binding to GoLocos 2 and 3. (A) Architecture of the Pins FRET sensor. (B) Full transition to the Pins open state requires both Gai-GDP and Mud. Shown in the bar graph are the FRET ratios for the WT Pins FRET sensor (YFP–Pins–CFP) – 200 nM with various combinations of Gai-GDP and Mud ligands present at 10 μM concentration and after trypsin digestion. Error bars equal one SD (n = 3). (C) Pins with inactivated GoLocos 2 and 3 is unable to transition to open state with Gai-GDP and Mud present. Shown in the bar graph are the FRET ratios for the Pins ΔGL2/3 FRET sensor (YFP–Pins–CFP) – 200 nM with various combinations of Gai-GDP and Mud ligands present at 10 μM concentration. Error bars equal one SD (n = 3). (D) Model for coupled Gai-GDP and Mud binding and relationship to Pins conformational states. (E) HA:Pins can rescue Mud localization in pins larval neuroblasts. Pins localization is detected by anti-HA antibody, Mud is detected by anti-Mud antibody, and the mitotic stage is determined by anti-phospho histone H3 (α-PHH3) antibody. Moderate (60%) or strong (26%) Mud apical crescents were observed in metaphase neuroblasts. The localization of Mud to the spindle poles is independent of Pins activity (13). Miranda was used as a basal marker. (F) Pins with inactivated GoLocos 2 and 3 fails to rescue Mud apical enrichment in pins larval neuroblasts. Staining is as in E. Although HA:Pins ΔGL2/3 is correctly localized, only weak or moderate Mud apical staining was observed in 31% of metaphase neuroblasts. (Scale bar: E and F, 5 μm.) (G) Pins–Gai response profile. The concentration of Pins with Gai bound at GoLoco1 and Gai-saturated Pins as shown in a function of Gai concentration based on the model shown in D. This model uses the intrinsic affinity of Gai for the GoLocos (Kₐ = 530 nM) and assumes that the inactive form of Pins is favored 1,000:1 over active Pins in the absence of Gai or Mud. Simulations were performed with Berkeley Madonna. Predicted neuroblast phenotypes with the state of cortical polarity (red; Mud; blue, Pins; green, Gai) and spindle positioning are shown at low, medium, and high Gai concentration ranges.

to examine the dynamics of spindle behavior using a GFP-tagged microtubule-associated protein (see Methods). In WT neuroblasts, the apical centrosome/spindle pole is anchored at the center of the Gai/Pins/Mud crescent from prometaphase through telophase (13), although slight spindle rocking can be observed (SI Fig. 6 and SI Movie 1). In neuroblasts with reduced Gai levels, where Gai/Pins but not Mud are present at the apical cortex, we find that the centrosome/spindle pole is not stably attached to the apical cortex and often shows excessive rotation (SI Fig. 6 and SI Movie 2). These data provide further support for our model that low levels of Gai are sufficient to recruit Pins to the cortex via GoLoco1 binding but are insufficient to allow Pins to bind Mud and capture the apical spindle pole.

Discussion

Through interactions with Gai and Mud, Pins regulates two fundamental aspects of asymmetric cell division: cortical polarity and alignment of the spindle with the resulting polarity axis. In this study, we have investigated the mechanism by which Gai regulates Pins interactions with the spindle orientation protein Mud. We have found that, although the three Pins GoLocos are intrinsically equivalent, independent Gai binding sites, an intramolecular interaction with the Pins TPRs leads to differential Gai binding. Gai binding to GoLoco1 is not coupled to the Pins intramolecular interaction and therefore does not influence Mud binding but is sufficient to localize Pins to the cortex for Mud-independent functions (e.g., recruitment of Insc to the apical cortex). Gai binding to GoLocos 2 and 3 destabilizes the Pins intramolecular interaction leading to cooperative Mud binding, and together the ligands induce an “open” Pins conformational state. This leads to a model in which Gai induces multiple Pins activation states: one that localizes cortically but is not competent for Mud binding, and one that binds Mud linking localized Gai to the mitotic spindle (Fig. 3D).

The Pins Intramolecular Interaction as a Mechanism for Localizing Mud Activity to the Cortex. Intramolecular interactions are common features of signaling proteins that typically act through “autoinhibition” of an enzymatic or ligand binding activity (22). Such interactions allow for coupling of regulatory molecule binding to an increase or decrease in downstream function, a critical aspect of information flow in signaling pathways (22–24). Pins is involved in the regulation of multiple downstream functions, and our results support the notion that the multiple Gai binding sites present in Pins allow for the signal to branch into two pathways, one controlling cortical polarity and the other spindle positioning. A notable exception to the multiple GoLocos present in Pins-like proteins is the C. elegans Pins homologue GPR-1/2, which contains a single GoLoco domain. The lack of multiple GoLocos in GPR-1/2 may be consistent with their more limited role in C. elegans asymmetric cell division, where they regulate spindle positioning but not cortical polarity (25–27).

In the model presented here, the Pins intramolecular interaction serves to regulate Mud binding. This may occur for several reasons. First, localization of Mud activity to the apical cortex appears to be important for aligning the spindle with the axis of cortical polarity (8, 13, 14). In this context, the Pins intramolecular interaction may be important for restricting Mud activity...
to the apical cortex. Mutant *pins* or *Gai* neuroblasts may have low ectopic Mud activity at the basal or lateral cortex that leads to the observed misdirected spindle rotation seen in our live neuroblast imaging (SI Movie 2). This observation is consistent with our previous observations that too little Mud (in *mud* mutant neuroblasts) results in spindle position defects without any rotation (13). Second, Mud activity may be affected by its interaction with Pins. For example, LGN binds to a region of NuMA near its microtubule binding site such that LGN binding to NuMA competes with microtubule binding (28).

Unequal Regulation of the GoLocos by the TPRs Leads to a Complex Gai Response Profile. A unique feature of the Pins intramolecular interaction is that autoinhibition is incomplete. Binding of GoLocos 2 and 3 to Gai is repressed by the TPRs, but binding to GoLoco1 is not. This has two important consequences. First, whereas the three GoLocos are intrinsically equivalent and independent Gai binding sites, TPR repression of GoLocos 2 and 3 significantly lowers the affinity of these GoLocos relative to GoLoco1. This leads to preferential population of GoLoco1, which may be important for temporal regulation of asymmetric cell division by ensuring that cortical polarity is established before the spindle is positioned. Second, the TPRs appear to repress GoLocos 2 and 3 cooperatively (Gai binding to 2 or 3 increases the affinity at the other site). Cooperativity is a common property of signaling pathways that is used generate complex input–output profiles (29). Pins exhibits both homotropic (Gai) and heterotropic (Gai and Mud) binding cooperativity. In both cases, cooperativity is not an inherent property of the binding sites but is generated through the competition that results from the intramolecular interaction between the TPRs and GoLocos. Such “cooperative repression” of inherently equivalent binding sites through intramolecular interactions may be a general mechanism for generating cooperativity in signaling proteins.

Methods

Protein Expression and Purification. DNA encoding full-length *Drosophila* Pins was amplified from an embryonic cDNA library. *Drosophila* Gai was completely insoluble, and therefore mouse Gai3 25–354 (which is 76% identical to the *Drosophila* protein) cloned from a macrophage cDNA library was used for these studies. A plasmid containing Mud residues 1825–1997 was generated as described in ref. 13.

All proteins were expressed by using the *Escherichia coli* strain BL21(DE3) as a host strain with pGEX-4T-1-based vectors for GST fusions and pBHA-based vectors for hexahistidine fusions, which were isolated and purified as described in ref. 30.

Gai was either used directly after purification or loaded with GDP or GMPNP subsequent to purification (GDP-loaded and unloaded behaved identically). Nucleotide was added at a 5-fold molar excess in 10 mM Hepes/100 mM NaCl/1 mM DTT/1 mM EDTA (pH 7.5) and incubated at room temperature for 30 min. The final buffer conditions contained 10 mM MgCl2.

In Vitro Binding Assays. GST pull-down assays were performed as described in ref. 31. Briefly, ligands were added to glutathione agarose with adsorbed GST fusion proteins in binding buffer (10 mM Hepes/100 mM NaCl/1 mM DTT) at the indicated concentrations to a final reaction volume of 50 μl and incubated at room temperature for 15 min before washing, elution, and analysis by gel electrophoresis.

Fluorescence anisotropy binding assays were performed as described in ref. 31. For labeling of the Pins GoLocos, a cysteine was added at the COOH terminus of residues 372–658, and the two naturally occurring cysteines, residues 487 and 561, were mutated to serines. For binding experiments, solutions were prepared with increasing amount of ligand and constant dye-labeled component (100 nM) in binding buffer with the temperature maintained at 20°C by using a circulating water bath. Data series were fit to an equation describing binding to three independent, equivalent sites using nonlinear regression.

Gel-filtration studies were carried out on a Superdex 200 molecular sizing column calibrated with a series of molecular weight standards (GE Healthcare) equilibrated in binding buffer. Proteins at the indicated concentrations in a volume of 100 μl were incubated at 4°C for 15 min before being loaded on the column at a flow rate of 0.5 ml/min with 300–μl fractions collected for analysis. Protein elution was detected by absorbance at 280 nm.

Construction and Analysis of the Pins FRET Sensor. Full-length Pins, with yellow fluorescent protein (EFYF 1–239) and cyan fluorescent protein (ECFP 1–239) coding sequences at the NH2 and
COOH termini, respectively, was expressed and purified as described above except that gel-filtration chromatography was added as a final purification step. The proteins at 200 nM in binding buffer were excited with a wavelength of 433 nm (to minimize direct YFP excitation), and the amount of energy transfer was measured by taking the ratio of CFP (475 nm) and YFP (525 nm) emission. For proteolysis experiments, proteins were incubated with 0.9 nM trypsin (Sigma) at 18°C for 15 min, followed by FRET measurement.

Fly Strains. The Oregon R strain was used as WT control for the analysis of cell polarity and spindle orientation in larval neuroblasts of fixed specimens. The gene trap line P[PTT-GA];Jupiter^G00147 [also known as G147-GFP (31)], which expresses a GFP-tagged microtubule-associated protein, was used to visualize microtubules in live larval neuroblast preparations. The Gai^P8 allele is described in ref. 17. We usedzygotic Gai^P8 mutants that contained maternally contributed Gai that allowed for survival into late larval stages unlike maternal zygotic Gai^P8 mutants. The Gai^P8 allele and Gai^P8, P[PTT-GA];Jupiter^G00147 recombinant chromosome were re-balanced over TM3 actin-GFP Ser and TM6B Tb Hu chromosomes, respectively. Newly hatched mutant larvae were identified based on the absence of GFP expression in the gut or the absence of the dominant Tb marker.

For transgenic analysis, the full-length WT or ΔGL2/3 Pins were subcloned into pUAST containing an N-terminal hemagglutinin (HA) epitope. Transgenic flies carrying P(UAS-HA:Gai) or P(UAS-HA:GaiPinsΔGL2/3) on the second chromosome were crossed with the pins^P62 allele to form P(UAS-HA:Pins); pins^P62/TM3-Sb or P(UAS-HA:PinsΔGL2/3); pins^P62/TM3-Sb lines. These flies were crossed at 18°C to the w^{nrui}i-GAL4; pins^P62/TM3-actin-GFP Ser driver line, and mutant larvae in the progeny were analyzed. Mutant larvae were identified based on the absence of GFP expression and the presence of smaller central brain neuroblasts.

Immunocytochemistry. Freshly hatched WT pins^P62 and Gai^P8 zygotic mutant larvae were aged for 96–120 h at 25°C and prepared for immunofluorescent antibody labeling as described previously, with the modification that 5% normal goat serum was added to the larval blocking and primary antibody solutions (32). Primary antibodies were rat anti-Pins [2#1, 1:500 (9)], rabbit anti-Gai (1:500; raised against peptide, amino acids 327–355), rabbit anti-Insc (1:1,000; W. Chia), rabbit anti-Mud (raised against amino acids 375–549), 1:2,000 (H. Nash), mouse anti-α-tubulin (1:2,000; DM1A, Sigma), and mouse-anti-HA (1:1,000; Covance). Fluorescently conjugated secondary antibodies were obtained from Jackson Immunoresearch Laboratories and Molecular Probes. For DNA labeling, fixed specimens were incubated in PBS 0.1% Triton X-100 containing 1 mg/ml RNase A for 1 h at room temperature and counterstained with 4 g/ml propidium iodide. Confocal images were acquired on a Leica TCS SP2 microscope equipped with a ×63 1.4-N.A. oil-immersion objective. Panels were arranged by using ImageJ (National Institutes of Health), Photoshop (Adobe Systems), and Illustrator (Adobe Systems).

To determine the frequency of cortical Pins, Insc, and Mud crescents, the ratio of background-correlated cortical and cytoplasmic fluorescence intensity (FI) was determined. A crescent was scored to be present if the ratio of background-correlated cortical and cytoplasmic FI exceeded 1.75. To calculate background corrected FIs, mean FIs were determined for three 2 × 2-pixel areas at the cortex and in the cytoplasm of each metaphase neuroblasts. From these measured cortical and cytoplasmic FIs, the mean background fluorescence (measured in three different areas of interphase nuclei, which do not express Pins, Insc, or Mud proteins) was subtracted to obtain the background-correlated cortical and cytoplasmic FIs.

Analysis of Spindle Orientation in Fixed and Live Larval Neuroblasts. In fixed specimens, spindle orientation was measured at metaphase as the angle between the spindle axis (defined by position of the two spindle poles) and the cell polarity axis (defined as a line through the cell center and the center of the Pins or Insc crescents).

For the analysis of spindle orientation in live neuroblasts, freshly hatched larvae expressing a GFP-tagged MT-associated protein (G147-GFP) were aged at 25°C for 96–120 h, and whole brains were mounted and imaged as described in ref. 32. Brains were imaged by using a Bio-Rad Radiance 2100 laser scanning confocal microscope equipped with a ×60 1.4–N.A. oil-immersion objective. Image stacks were processed by using ImageJ and converted into movies by using QuickTime. The beginning of prometaphase (0:00 [min:sec]) was determined as the time point at which microtubules emanating from centrosomes penetrated the cell center to form the spindle. Anaphase onset was determined by the apparent shortening of kinetochoore fibers. Orientation of centrosome pairs/spindles over time was measured as the angular position relative to an axis defined by the position of the centrosome pair at the beginning of prometaphase (0:00, 0°).

We thank V. DeRose, K. Guillemin, R. Newman, S. Siegrist, and T. Stevens for critical reading of the manuscript; members of the K.E.P. laboratory for helpful comments and suggestions; W. Breyer for her work at the inception of this project; W. Chia (Temasek Lifesciences Laboratory, National University of Singapore), X. Morin (Developmental Biology Institute of Marseilles, France), H.A.N., and J. Knoblich (Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria) for sharing reagents; and S. Siegrist and S. Shrimpton for generation of the Gai^P8, P[PTT-GA];Jupiter^G00147 recombinant line. This work was supported by an American Heart Association predoctoral fellowship (to R.W.N.), the Howard Hughes Medical Institute (for which C.Q.D. is an Investigator), a Damon Runyon Scholar Award (to K.E.P.), and National Institutes of Health Grant GM068032 (to K.E.P.).